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Abstract

In human-computer interaction research, transparency is widely regarded as crucial for

user trust in artificial intelligence (AI). Transparency is expected to provide the end-

user with understanding and knowledge about the functionality of an AI, which in turn

creates trust. However, empirical investigations on this assumption have been largely

omitted, and there are several proposals as to how transparency could be achieved. This

thesis explores human-friendly AI explanations as a means for transparency and exam-

ines the effects of explanations on objective trust behavior and subjective measures of

trust. An online experiment (n = 387) was conducted that compared two explanation

techniques with a control. Study participants were asked to estimate subleasing prices

of six apartments based on respective features and amenities. After this estimate, a

pseudo AI provided participants with a price recommendation, which was accompanied

by an explanation for all but the control group. Results showed that human-friendly

explanations lead to higher trust behavior if participants were advised to decrease the

initial price estimate. However, explanations had no effect if the AI recommended to

increase the initial price estimate. Trust was further evaluated by validated trust ques-

tionnaires which revealed no effects of human-friendly explanations on subjective trust

ratings. Possible reasons for this discrepancy between objectively observed trust behavior

and subjectively rated trust are discussed and implications for the design of transparent

AI through human-friendly explanations are suggested.
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Introduction

It is generally recognized that there are specific tasks computers perform better than

humans, such as numeracy, logical reasoning or storing information (Copeland, 2015).

With the recent breakthroughs in artificial intelligence (AI), however, domains that used

to be exclusively associated with human competence and considered computationally

unattainable are likewise challenged by machines. Advances in AI in the last decade

were achieved thanks to an increase in available data, major hardware improvements

and new algorithms, especially with the emergence of machine learning (ML) algorithms

(Došilović, Brčić, & Hlupić, 2018). While classical algorithms perform automated in-

structions that are rule-based, ML is a set of algorithms that can modify themselves

and make varying decisions in response to different data inputs (Molnar, 2019). In a

sense, ML is not programmed to perform a task, but programmed to learn to perform

a task. This ability to change and learn is described as intelligence and makes ML a

branch of modern AI. While recognizing these differences, the terms algorithms, ML and

AI are used interchangeably in this thesis due to their conceptual proximity. The ML

approach in AI led to improvements in speech recognition, image classification and ob-

ject detection, and is now increasingly used in a variety of everyday applications such

as video surveillance, email spam filtering, online customer support and product recom-

mendations. Because of this general applicability and potential manifold consequences,

voices are being raised that these algorithms should satisfy criteria like fairness, relia-

bility, accountability and transparency. While all those criteria seem equally important,

this work will focus on the notion of transparency. Since humans can be directly affected

by the decision of an algorithm (e.g., an algorithm that decides if a requested loan will be

granted to an applicant or not), or be involved in the decision-making process itself (e.g.,

an algorithm that recommends to a business corporation that their production should be

decelerated), the what, how and why of those algorithmic decisions should be explained

transparently to humans. This call for transparent algorithms has led to the research

field of explainable artificial intelligence (xAI) that explores methods and models that

make the behaviors, predictions and decisions of AI transparent and understandable to
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humans. While xAI is typically referred to as a multidisciplinary field (Mohseni, Zarei,

& Ragan, 2020), most of the work conducted today comes from the machine learning

community. However, explanations from algorithms and AI to humans are not solely a

computational problem. The interpretation of what is and what is not a useful explana-

tion, is ultimately defined by people, not algorithms. Therefore, measured outcomes such

as trust are consequently properties of human behavior (Poursabzi-Sangdeh, Goldstein,

Hofman, Vaughan, & Wallach, 2018) and as a consequence, the endeavor of xAI should

go beyond machine learning research, extending into human-computer interaction (HCI)

and other disciplines. The HCI community has acknowledged the importance of their

field in the academic discussion and has defined the need for transparent AI as one of

the grand challenges for HCI researchers (Stephanidis et al., 2019). Transparency is not

only legally required, but is also thought to contribute towards building a relationship

of trust between humans and algorithms (Stephanidis et al., 2019). Others argue that

transparency allows humans to question a system in order to develop appropriate trust

and reliance, rather than blind faith (Rader, Cotter, & Cho, 2018). Nevertheless, there

are still few empirical studies that evaluate the impact of transparency on trust (Abdul,

Vermeulen, Wang, Lim, & Kankanhalli, 2018). Existing work in xAI often focuses on

AI developers rather than end-users that encounter the decisions of such algorithms. We

will see that for end-users, explaining the decision of an algorithm might be more feasible

than merely making an algorithm transparent. This thesis aims to fill these gaps by in-

vestigating the effect of different AI explanations on objective and subjective user trust.

A decision-making experiment on Amazon Mechanical Turk (MTurk) was conducted to

compare two promising explanation techniques with a control condition. AI explana-

tions are often axiomatically demanded to enable user trust, but so far, a comprehensive

comparison of different explanation techniques has not been carried out and there is no

evidence that explanations are indeed increasing trust. Given HCI’s focus on technology

that helps people better understand and collaborate with technology, more work from

the HCI community is needed in this field, and the thesis presented here aims to make a

contribution.



TRANSPARENCY AND TRUST IN AI 8

Theoretical Background

In this section, a detailed theoretical background of the relevant concepts, the ter-

minology and currently discussed transparency approaches in HCI and xAI is provided.

This serves as a starting point for the legal importance of transparent algorithms and AI,

what current transparency methods are, what they try to accomplish, and to describe

the research approach employed in this empirical work.

Algorithmic Transparency

As responsibilities and processes are increasingly delegated to automated decision-

making systems, more attention is being paid to algorithmic and AI transparency (Rader

et al., 2018). Generally speaking, algorithmic transparency describes the level to which a

system provides information about its workings or structure (Ras, van Gerven, & Hase-

lager, 2018). Promises about transparency are commonly driven by a certain chain of

logic — transparency enables observations that produce insights, which in turn create

knowledge about the goals, intent and behavior of a system (Ananny & Crawford, 2018).

This knowledge, according to this line of reasoning, is required to govern algorithms,

to hold them accountable and to ensure their fairness. Not only researchers, but also

policy-makers advocate transparency as a remedy for identifying and preventing poten-

tially negative effects of such systems. An example is the introduction of the EU general

data protection regulation (GDPR) by the European parliament. Its frequently men-

tioned notion of “a right to an explanation” in automated decision-making processes is

closely related to transparency. A right to an explanation constitutes an explanation for

a specific output of an automated process, which is often carried out by an algorithm

or AI. According to recital 71, article 12 and article 14 of the GDPR, an explanation

should be given "after an assessment, in a concise, transparent, intelligible and easily

accessible form, using clear and plain language, provided in writing" that should include

"meaningful information to the subject about the logic involved" (European Parliament,

2018). Some authors do not agree that a legally binding right to an explanation exists

in the final version of the GDPR (Wachter, Mittelstadt, & Floridi, 2017). Nevertheless,
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the GDPR might provide a foundation for how algorithmic and AI explanations could

be legally envisaged. While transparency is generally considered crucial for effective and

responsible real-world deployment of such systems, significantly different transparency

approaches exist, tailored to the algorithm’s goal, context and target group, such as de-

velopers, decision makers and end-users (Samek, Montavon, Vedaldi, Hansen, & Müller,

2019). Due to this, it is necessary to initially distinguish and examine two diverging

approaches of transparency more thoroughly — interpretability and explainability.

Interpretability and explainability

In the context of xAI, explainability and interpretability are often used interchange-

ably as they are closely related terms. Both attempt to accomplish transparency, yet

their rationale and level of implementation differ. In his influential work, Lipton (2018)

specified the previously ill-defined concepts. He suggested that interpretability is the in-

formation that a system provides about its inner workings. In this sense, interpretability

is associated with the notion of transparent white box algorithms, meaning algorithms

whose internal mechanisms are accessible and not concealed. In contrast, opaque black

box algorithms can only be viewed in terms of their inputs and outputs, without any

direct observations of their inner workings. Explainability aims to give meaningful in-

formation by explaining how a specific output or decision of such black box algorithms

was reached. In this thesis I define the two terms as follows: interpretability is achieved

by using a white box algorithm that can be observed, whereas explainability implies us-

ing a black box algorithm and making it comprehensible by explaining its output after

a computation has been carried out. Adadi and Berrada (2018) described the different

transparency approaches on three complementary axes and presented a comprehensive

overview of the xAI taxonomy:

Global vs. local. Describes the differentiation between explaining an individual out-

put (local explanation) or interpreting the entire model (global interpretability) (Adadi

& Berrada, 2018). It is therefore identical with the distinction between the white box

and black box approach introduced above.
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Intrinsic vs. post-hoc. Likewise, researchers distinguish whether transparency is

achieved by restricting the complexity of the algorithm (therefore providing intrinsic

interpretability), or by applying techniques that analyze the algorithm after a decision

has been made (providing post-hoc explanation) (Molnar, 2019). Intrinsic interpretability

is thus provided due to the simpler structure of an algorithm and theoretically, intrinsic

interpretability can accomplish transparency with the white-box approach. Post-hoc

techniques, on the other hand, do not describe the internal state of an algorithm, but

nonetheless extract useful information from black boxes after a decision has been reached

(Lipton, 2018). This is often enabled by applying a simpler model post-hoc that describes

the more complex one.

Model-specific vs. model-agnostic. Model-specific methods are limited to specific

model classes or a single type of algorithm (Molnar, 2019). Regression weights in a linear

model, for example, are model-specific. Model-agnostic, on the other hand, signifies that

the method can be applied to any type of algorithm. Model-agnostic techniques are

applied after the model has been trained (post-hoc) and usually function by analyzing

input and output. While intrinsic techniques are by definition model-specific, post-hoc

techniques are usually model-agnostic (Adadi & Berrada, 2018).

This clarification follows the notion of Lipton (2018), which states that explainability

is post-hoc interpretability. This definition is adopted for this thesis with the addition

that explainability is achieved by local or global post-hoc explanations that are usually

model-agnostic. On the other hand, interpretability is achieved by global intrinsically

interpretable algorithms that are, by definition, model-specific. Both concepts attempt

to increase transparency, yet there are certain limitations to interpretability. I argue that

in the context of algorithmic transparency, whereas it is adequate to apply explainability,

it might not be reasonable to apply interpretability. The reasons for this are outlined in

the following.

• Overwhelming Complexity: Many algorithms, especially ML algorithms, can

be overwhelmingly complex and may have an internal state composed of millions
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of interdependent values and parameters (Mittelstadt, Russell, & Wachter, 2019).

As such, trying to reveal the functions used to reach decisions may well be too

complex, even for developers of such algorithms, let alone end-users. Wachter,

Mittelstadt, and Russell (2018) argue that displaying the internal state of complex

algorithms to end-users and achieving transparency in the form of interpretability is

extremely challenging, and might be virtually impossible. Interpretability therefore

does not necessarily contain meaningful information that allows end-users to reason

about the decision-making process of an algorithm, as aimed to accomplish by

transparency.

• The interpretability trade-off : In the pursuit of ever more accurate predic-

tions, algorithms are getting increasingly complex and a certain trade-off between

accuracy and interpretability becomes evident (Shmueli, 2010). ML algorithms, for

example, have a high predictive power but are also multi-layered and more com-

plex compared to classical algorithms. The trade-off leads to the difficult question

what developers should optimize for — accuracy (how well the algorithm predicts

an outcome) or interpretability (how well the algorithm can be observed and in-

terpreted). Doshi-Velez et al. (2017) reason that it could be counterproductive to

trade accuracy for interpretability, given that one of the biggest benefits of complex

algorithms and AI is the ability to detect patterns that humans fail to identify.

• Corporate compliance: Companies like Spotify, YouTube and Amazon rely on

business models for which algorithms and AI are paramount, since they create prod-

uct recommendations that increase revenue. With the interpretability trade-off in

mind, it seems unreasonable to assume that corporations would favor interpretable

algorithms for better performing ones. Moreover, there exist concerns that inter-

pretability would force trade secrets to be revealed, as it requires the innermost

mechanism of an algorithm to be displayed (Doshi-Velez et al., 2017). From this

perspective, corporate compliance for interpretability is expected to be low.
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• Legal requirements: The right to an explanation that the GDPR demands on

the one hand, and the ever more complex algorithms, on the other hand, seem to

create a field of tension. From the legal viewpoint of the previously introduced

GDPR, however, the differentiation between the concepts interpretability and ex-

plainability seems straightforward: the GDPR stipulates explanation, as in right

of an explanation, not interpretation. Given Lipton’s emphasis of explainability as

post-hoc interpretability and contrasting it with the GDPR’s request for an expla-

nation of the decision reached after such assessment, the legal requirements appear

to be better satisfied with explainability rather than interpretability.

On account of those arguments, applying interpretability to complex algorithms

and AI might not be feasible and promising when aiming for transparency. Beyond

that, making a system transparent does not necessarily mean that it leads to insight,

understanding or meaningful information as the GDPR suggests. For this reason, this

thesis exclusively focuses on explainability with regard to transparency and examines

different explainability techniques. To identify, however, which explainability techniques

are the most promising ones to empirically compare, it seems helpful to first consider

what humans generally evaluate as good explanations.

Human-friendly Explanations

In the endeavor for meaningful explanations, researchers emphasize the importance

of incorporating insights from philosophy, social sciences and psychology into the field of

xAI because of their research on how people define, generate, select, evaluate and present

explanations (Miller, 2019; Mittelstadt et al., 2019). De Graaf and Malle (2018) argue that

because people assign human-like traits to artificial agents, they will expect explanations

from them that are similar to the way in which humans explain their actions. Generally

speaking, explanations are distinguished according to their completeness or the degree to

which the entire causal chain of events can be explained (Mittelstadt et al., 2019; Ruben,

2015). This is often expressed as the difference between full scientific explanations and

partial everyday explanations (Ruben, 2015). Miller (2019) argues that these everyday
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explanations are, essentially, what people demand when they inquire about the decision-

making process of another human being. To him, partially describing how certain factors

were used to reach the decision in a specific situation is of greater importance than a

description of the full decision-making process in general. For everyday explanations, any

clarifying information can be considered an explanation (Doshi-Velez et al., 2017). Miller

(2019), however, argues that not all explanations are equal, and that some information

is more valuable for humans than others. This section further discusses the work of

Miller (2019) on human-friendly explanations and adds implications for HCI and xAI

that Molnar (2019) elaborated.

Explanations are selective. As aforementioned, humans rarely expect actual and

complete scientific explanations of a decision P (or prediction, output, event etc.). People

often select the most important or immediate causes from a sometimes infinite number

of causes to be the everyday explanation (Miller, 2019). The findings of Lisman and

Idiart (1995), that an average person is said to remember no more than 7 +/- 2 pieces of

information at a time, might be another reason for favoring selective explanations that

can be successfully processed and remembered.

Explanations are contrastive. Miller (2019) argues that humans usually do not ask

why a certain decision P happened, but why this decision P has happened instead of

another decision Q. This approach has also been described as counterfactual explanations.

Miller (2019) argues that people better process contrastive or counterfactual explanations.

In the counterfactual case, only what is different between two events has to be explained.

In this light, the best explanation is the one that highlights the greatest difference between

the decision P and decision Q.

Explanations are not about probabilities. For Miller (2019), referring to proba-

bilities in an explanation is not as effective as referring to causes. As a result, using

statistics to explain why a decision P occurred can be unsatisfying for humans (Miller,

2019). Numerous psychological experiments demonstrated that humans struggle to com-

prehend probabilities, and it is heavily debated if people think in accordance with the

laws of probability theory or merely use heuristics and biases (Gigerenzer & Selten, 2002).
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Explanations are social. For humans, explanations are a form of social interaction

or more specifically a transfer of knowledge, often presented as part of a conversation

(Miller, 2019). As a consequence, practitioners should pay attention to the social en-

vironment when implementing explainability. Molnar (2019) points out that explaining

something to an expert is different than explaining something to a layperson. Moreover,

and as demonstrated by the confirmation bias (Nickerson, 1998), humans tend to ignore

or devalue information that is inconsistent with their prior beliefs. This implies that for

different target audiences, explanations are not equally valuable. However, this social

aspect is not inherent in explanations coming from algorithms and AI.

While these four key points do not encompass all of Miller’s profound work on human-

friendly explanations, they certainly contain its essence. I agree with the argumentation

of Miller (2019) and Mittelstadt et al. (2019) that explanations should at least fulfill

some of the above mentioned criteria to be truly meaningful to end-users. Taking this

disparity into consideration, I limited the explainability techniques that were empirically

compared in this thesis.

Explainability techniques

Explainability techniques broadly fall into four categories (Adadi & Berrada, 2018):

1. Visualization

2. Knowledge extraction

3. Influence methods

4. Example-based explanation

Taking into account the above-mentioned complementary axes (global vs. local,

intrinsic vs. post-hoc, model-specific vs. model-agnostic), more than 17 different expla-

nation techniques are being proposed and debated in the current HCI and xAI litera-

ture. The varying explanation approaches offer advantages for different target audiences
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(experts, decision makers, AI practitioners etc.), but by applying the requirements of

the GDPR and Miller’s insights of what constitutes a good explanation, the techniques

that come into question for end-users can be narrowed down substantially. From the

17 explanation approaches, only a handful meet the GDPR’s requirement of meaningful

explanations after an assessment (post-hoc) using clear and plain language, provided in

writing. With the implications of Miller’s human-friendly explanations in mind that fa-

cilitate meaningful information, the two most promising explainability techniques seem

to be feature importance and counterfactuals.

Feature importance. As the name suggests, feature importance explains which fea-

tures are most important for an algorithmic outcome or the decision of an AI. As Miller

(2019) suggested, the selection of the most important causes is also what humans are

interested in when asking for an explanation. The feature importance method has the

following notation: Outcome P was returned because variable V had values (vi, vii, ...)

associated with them. To provide a simplified example: "Flu was returned because temper-

ature had value 39°C”. Feature importance allows end-users to determine which feature

had the most impact on the outcome and hence fulfills Miller’s proposed selective criterion

for explanations.

Counterfactuals. In addition to the main causes of an outcome, counterfactuals pro-

vide if-then statements that help a user identify what might be changed to achieve a

desired outcome. Counterfactuals commonly have the following form: Outcome P was

returned because variables V had values (vi, vii, ...) associated with them. If V had val-

ues (vi’, vii’, ...) instead, and all other variables remained constant, outcome P’ would

have been returned. Thinking in counterfactuals requires imagining a hypothetical reality

that contradicts the observed facts, hence the name counterfactual. For the same sim-

plified example as before, this could lead to the following statement: "Flu was returned

because temperature had value 39°C. If temperature instead had value 37°C, cold would

have been returned". Wachter et al. (2018) argue that counterfactuals help an end-user

act rather than merely understand by altering future behavior for a desired outcome.

Counterfactuals combine Miller’s selective and contrastive criteria.
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Both techniques are structurally similar and can be classified as local model-agnostic

post-hoc explanations, but while feature importance falls into the category of the influence

methods approach, counterfactuals are categorized as example-based explanations (Adadi

& Berrada, 2018). However, both techniques provide information to the end-user that is

both human-friendly and meets the explicit requirements of the GDPR, while avoiding

the major pitfalls of interpretability.

Despite this extensive introduction to algorithmic transparency and human-friendly

explanations, the question remains what the goals and motivations of explainability are

in the context of algorithmic-decision making and AI. While this thesis focuses on trust

as a motivation for explainability, other purposes of explanations are being discussed in

the scientific literature and Lipton (2018) points out that the HCI and xAI communi-

ties provide diverse and sometimes non-overlapping motivations. Some authors argue

that explainability could help verify and improve the functionality of a system (i.e. for

debugging), support developers to learn from a system (i.e. generating hypotheses), or

to ensure fair and ethical decision-making (Mittelstadt et al., 2019). In this thesis, the

focus lies on the rationale that explainability enhances trust in the AI system and its

reached decisions. A brief and non-exhaustive introduction to trust is thus provided.

Subsequently, trust will then be discussed in the context of HCI and xAI respectively,

and established trust models and measurements are introduced.

Trust

The work of Andras et al. (2018) provides a comprehensive overview of the multi-

layered facet of trust and sometimes diverging trust concepts from different disciplines.

The authors argue that in the social world, trust is the expectation of non-hostile be-

havior; in the context of economics, trust is conceptualized through game theory; in

psychological terms, trust represents cognitive learning from experiences, and philosoph-

ically speaking, trust is based on moral relationships between individuals (Andras et al.,

2018). In his book Vertrauen - die unsichtbare Macht, Hartmann (2020) criticizes that

the everyday use of the word trust is misleading when applied to technology and that
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trust in this case must be differentiated from the concept of reliance. For Hartmann, trust

is a property of the human condition, characterized as an acceptance of vulnerability and

human expectation that this vulnerability will not be exploited. Reliance, on the other

hand, is more related with the predictability of a behavior of someone or something. Since

algorithms and AI have no knowledge about human vulnerability, Hartmann concludes

that it is unreasonable to talk about trust when referring to interactions between humans

and algorithms, or AI respectively. Instead, it is reliance that applies.

Trust in HCI and xAI. Despite this ambiguity, within the HCI and xAI communities,

trust in algorithmic decisions and AI often seems to be demanded axiomatically without

further clarification. Chopra and Wallace (2003) criticise that the HCI and xAI literature

lacks a conclusive definition of trust, as well as a consensus about its desired effects, and

a clear differentiation among the factors contributing to trust. Trust is believed to boost

the performance of the human-system collaboration, is thought to be a key factor affecting

the way people rely on automated systems, and is suggested to be closely connected to

usability and user satisfaction (Stephanidis et al., 2019; Yu et al., 2017). Research on

trust in human-system and human-machine has a long history in HCI, such as online

trust, trust in e-commerce, trust in technology, trust in recommender systems, content

trust and so on (Corritore, Kracher, & Wiedenbeck, 2003). Hoff and Bashir (2015) claim

that some similarities are apparent across domains and contexts and that almost every

definition of trust seems to include the following three characteristics:

1. First, there are two parties in a trusting relationship — a truster to give trust and

a trustee to accept trust.

2. Second, the trustee must perform a task that the truster desires. The trustee on the

other hand has an incentive to carry out the task. This incentive can consist of a

monetary reward or the benevolent desire to help. In interactions with technology,

the incentive for the trustee is usually based on the designer’s intended use for a

system.
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3. Finally, there is the possibility that the trustee will not succeed to perform the

desired task or perform it poorly. For the truster, trust therefore contains some

sort of risk-taking behavior and that trust is needed when something is exchanged

under uncertainty and vulnerability.

This applies to both interpersonal and human-automation trust, where trust in al-

gorithms and AI is likewise positioned. As elaborated before, the GDPR considers al-

gorithms and AI as cases of automated decision-making processes. In their systematic

review of trust in automation, Hoff and Bashir (2015) proposed three layers of trust that

conceptualize the variability of the concept: Dispositional trust, situational trust and

learned trust. This distinction is in accordance with the proposal of Yu et al. (2017),

defining trust as a multidimensional construct. Dispositional trust reflects the user’s

natural tendency to trust machines and technologies and involves cultural, demographic

and personality factors. Situational trust refers to more specific factors, such as the task

to be performed, the complexity and type of system, a user’s workload, perceived risks,

and even mood. And finally, learned trust encapsulates the experiential aspects of the

construct which are directly related to the system itself.

Measurements and models of trust in AI. These different layers of trust and their

variability imply that trust is a subjective construct experienced differently by different

people. The differentiation between subjective and objective trust and the measurement

of those constructs in xAI was addressed by Mohseni et al. (2020). They point out that

subjective trust measures include self-explanation during or after working with a sys-

tem and Likert scale questionnaires. To the best of my knowledge, no validated and

established questionnaire exists that measures subjective trust in algorithms or AI. How-

ever, for human-automation trust, Jian, Bisantz, and Drury (2000) designed the trust in

automation scale that has been evaluated several times (Gutzwiller et al., 2019; Spain,

Bustamante, & Bliss, 2008). In their systematic approach on trust in machine learning

and AI, Toreini et al. (2020) propose the trust model from Mayer, Davis, and Schoor-

man (1995) and the further developed ABI+ framework by Sanders, Schyns, Dietz, and

Den Hartog (2006) as a possible candidate for trust evaluation. The ABI+ framework
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consists of the the attributes ability, benevolence, integrity and predictability. Ability is

the perception of the skill, competence, resources and capabilities needed that a trustee

can have a successful influence within some specific domain. Benevolence is defined as

the extent to which a trustee is believed to want to do good, is interested in the welfare

of the truster and the absence of opportunistic behavior. To possess integrity, a trustee

must fulfill their promises, be perceived to act in accordance to a set of principles and

values that is shared with the truster. Finally, predictability reinforces the perception

of the other attributes (ability, benevolence and integrity) over time by demonstrating

consistent, regular and therefore predictable behavior. While Toreini et al. (2020) did

not provide any questionnaires for their ABI+ framework, the TrustDiff developed by

Brühlmann, Petralito, Rieser, Aeschbach, and Opwis (in press) captures the trust dimen-

sions benevolence, competence and integrity that are closely related to the dimensions of

the ABI+ framework.

For objective measures of trust, Mohseni et al. (2020) propose perceived system com-

petence, intention to return, user compliance as well as reliance with systems and user’s

perceived understanding. Another objective measure of trust behavior was suggested by

Dhurandhar, Iyengar, Luss, and Shanmugam (2018). They argue that a measured change

in behavior or performance after being presented an explanation (e.g. a person reducing

the speed of a semi-autonomous car after it explained to the driver that speeding on a

wet road is dangerous) could be an objective and mathematically quantifiable measure of

trust behavior. This interpretation of trust is measured by the parameter weight of advice

(WOA) that stems from the advice-taking literature (Harvey & Fischer, 1997). WOA

measures the degree to which people move their initial estimates towards an advice, thus

changing their behavior as a consequence of trust.

Previous work and aim of this study

Past research on algorithmic transparency has focused primarily on interpretability

rather than explainability (Krause, Perer, & Ng, 2016; Poursabzi-Sangdeh et al., 2018;

Springer, Hollis, & Whittaker, in press). Narayanan et al. (2018) explored the impor-
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tance of explanation properties and demonstrated that explanation size, the number of

cognitive chunks and the number of repeated terms in an explanation had an impact on

participants’ response time and subjective satisfaction. In a similar experiment, Kizilcec

(2016) showed that short textual explanations build trust with the algorithm’s results.

However, as is mostly the case when trust is assessed, the authors employed self-defined

Likert scales with questionable validity instead of established trust questionnaires that are

based on frameworks. An exception is the work of Cai, Jongejan, and Holbrook (2019): it

was able to reveal that example-based explanations in a visual task lead to higher ratings

in user’s trust dimensions benevolence and ability. Contrary to the widespread believe

that people are averse to algorithms (Dietvorst, Simmons, & Massey, 2014), results from

experiments conducted by Logg, Minson, and Moore (2019) suggest that people are will-

ing to rely on algorithmic advice in decision-making processes. Logg et al. (2019) showed

that under certain circumstances, participants trusted advice that were supposedly com-

ing from an AI more than advice that were labelled to come from a human. For this,

Logg et al. (2019) quantified how much people relied on AI advice, using the previously

introduced trust parameter WOA. So far, trust in AI has been investigated in arbitrary

and rather hypothetical domains like estimate tasks of a persons level of attractiveness

(Logg et al., 2019), forecasting romantic matches (Yin, Wortman Vaughan, & Wallach,

2019), and predicting which jokes people will find funny (Yeomans, Shah, Mullainathan,

& Kleinberg, 2019). These highly subjective domains are selected to investigate whether

AI recommendations are also perceived as trustworthy in the realm of typically human

judgements. A more objective domain was chosen by Poursabzi-Sangdeh et al. (2018).

They examined if interpretability had an effect on how people trust AI and change their

house price estimates. However, contrary to what one might expect when applying in-

terpretability, the authors found no significant differences in trust across conditions. To

the best of my knowledge, no similar experiments have been conducted that compare

and evaluate different explainability techniques with one another, let alone experiments

conducted with end-users. This thesis aims to fill this gap and the work by Poursabzi-

Sangdeh et al. (2018) served as an inspiration for the present study.
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Research question and hypotheses

The following research question was investigated:

RQ: What effect do different explainability techniques have on objective and

subjective end-user trust?

To answer this research question, the previously introduced explanatory techniques

feature importance and counterfactuals were compared with a control condition in a sce-

nario in which participants had to guess subleasing prices for different apartments. While

feature importance provide selective explanations, counterfactuals are also contrastive by

nature, making them a more promising candidate for human-friendly explanations. For

this reason, the specific hypotheses are:

H1 : The experimental conditions lead to higher objective trust scores compared to the control.

H2 : Counterfactuals lead to higher objective trust scores compared to feature importance.

H3 : The experimental conditions lead to higher subjective trust scores compared to the control.

H4 : Counterfactuals lead to higher subjective trust scores compared to feature importance.

The presumption was that objective and subjective trust behave in an equal manner

in so far as subjectively stated trust should also be reflected in objective trust behavior —

the higher the subjectively stated trust, the higher the objectively observed trust behavior

and vice versa.

Method

To answer the research question, an online experiment over the crowd-sourcing mar-

ketplace website Amazon Mechanical Turk (MTurk) was carried out (http://mturk

.com). First, as a matter of principle, a power analysis using the software PANGEA

(Westfall, 2015) was performed. For a presumed small effect size (d = .2) a total of 480

participants was calculated to achieve a power of 80%. The experiment was implemented

over the online survey tool Limesurvey (http://limesurvey.org).

http://mturk.com
http://mturk.com
http://limesurvey.org
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Participants

A total of 913 participants were initially recruited over Amazon Mechanical Turk.

Only workers from the USA with a human intelligence task (HIT) approval of 95% and

at least 100 approved HITs were allowed to participate in the experiment. Workers who

properly completed the task were reimbursed with 1.50 U.S. dollars and a bonus of 0.30

U.S. dollars for their participation. To ensure data quality, certain criteria were applied

during data cleaning (see Figure 1). Participants that failed to provide correct answers in

the bogus items (n = 36) and demonstrated careless responding in the control questions

(n = 310) were removed. After excluding outliers (n = 65), 387 participants remained

for the data analysis. The defining criteria for outliers are addressed in further detail in

the section data cleaning.

Participants recruited over MTurk
(n = 913)

Removed incomplete surveys 
(n = 115)

Participants with fully completed surveys 
(n = 798)

Participants with correct bogus answer
(n = 762)

Removed based on bogus item
(n = 36)

Participants with sufficient data quality
(n = 452)

Removed based on control questions 
(n = 310)

Participants included in data analysis
(n = 387)

Removed outliers 
(n = 65)

Figure 1 . Flowchart of study sample inclusion and exclusion criteria.
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Procedure and Task

After providing informed consent, participants were introduced to the study and

their task. They were asked to imagine a scenario where their goal was to sublease six

different apartments on a subleasing website. Based on the features and amenities of the

apartment (e.g. number of bedrooms, distance to public transit, etc.), they had to guess

an initial subleasing price (T1). Figure 2 illustrates how the apartments were presented

to the participants.

Figure 2 . Example of a presented apartment as stimuli.

After guessing T1, an alleged AI from the website provided a computed price recom-

mendation. In reality, however, a price recommendation based on basic arithmetic, rather

than an actual AI, was given. How exactly this price recommendation was calculated is

discussed in the section stimuli. After seeing the price recommendation, participants

could decide if they wanted to approach the AI recommendation or not, settling for a fi-

nal subleasing price (T2). Participants were informed that by choosing a lower price, they

would be more likely to find a subleaser, but would receive less profit. When choosing a

higher price on the other hand, they would be less likely to find a subleaser, but would

potentially receive more profit. They were told that the AI’s goal was to help them find
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the optimal price so they would find a subleaser with a reasonable profit. To ensure per-

formance and motivation, they were further informed that for good guessing they would

be paid an additional bonus of 0.30 Dollars. However, every participant received the

bonus, regardless of their performance. In order to better control price disparity between

urban and rural regions, participants were asked to indicate the U.S. state they currently

live in (e.g., Colorado) to ascertain their state capital (e.g., Denver). This not only made

the guessing process easier for participants, but also made the AI more convincing since

it was claimed that the AI would likewise base its price recommendations on data col-

lected in that state capital. After an example that showed how the apartments and their

amenities would be presented to them (see Figure 2), participants could start with the

actual task. After completion, participants had to fill out questionnaires and give some

demographic information. For ethical reasons, participants were debriefed about their

deception at the end of the study and informed that the AI was a pseudo AI and did not

actually use participants state capital for its recommendations.

Stimuli

The apartments that participants had to evaluate were real apartments retrieved

from the website Zillow (http://zillow.com) in May 2020. To create some variability,

six different apartments of different sizes and consequently price ranges were selected:

two small-sized apartments (500 - 750 square feet), two medium-sized apartments (751 -

1’000 square feet) and two large-sized apartments (1’001 - 1’250 square feet). Features

and amenities were collected directly from the website Zillow, whenever available. If not

available, a random value was chosen for continuous variables (e.g., distance to public

transit from 0.1 - 2.0 miles) and a random choice for dichotomous variables was made

(e.g., elevator YES / NO). All participants were presented with the same stimuli, that

is, the same apartments and features. What differed was the price recommendation and

the kind of explanation the recommendation was presented with (see Figure 3).

The price recommendation from the pseudo AI was designed so that a random num-

ber between 15 and 30 was picked. This random number was then transformed into

http://zillow.com
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(a) Control.

(b) Feature Importance.

(c) Counterfactual.

Figure 3 . Examples how the three different conditions (a) Control, (b) Feature

Importance and (c) Counterfactuals were presented to the participants for three

different apartments.

percentages and either added or subtracted to the initial subleasing price (T1), which al-

ways led to a random deviation between 15 and 30 percent. By applying this procedure,

it was ensured that no participant could guess the price correctly, inasmuch as there was

no ’correct price’. This has been a major limitation of past studies (Poursabzi-Sangdeh

et al., 2018), since the interpretation of WOA becomes meaningless if T1 and T2 are

equal to one another. It was randomly assigned that for three of the six apartments

the recommendation was negative, meaning lower than the initially guessed subleasing

price (e.g., if T1 was 1’000 and the random number 17, the AI recommendation was 830)

and for the other three apartments positive, meaning higher than the initially guessed

subleasing price. By doing this, the AI informed participants that their initial guesses

were either too low or too high which made it possible to compare positive and negative

recommendations.
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Measures

Independent variables. The previously introduced explainability techniques feature

importance and counterfactuals, as well as the control condition, served as independent

variables. Figure 3 shows how the price recommendation was explained to the partici-

pants. The output was designed in such a way that the subsequent explanations can be

seen as an extension of the preceding ones. To make the stimuli more convincing, the

most relevant outputs were presented as if it was a console output.

Dependent variables. For objective trust behavior the introduced weight of advice

from the advice-taking literature was used. It has the following notation:

WOA = |T2− T1|
|P − T1|

Here, P is defined as the model’s prediction, T1 is the participants’ initial prediction

of the apartment’s price before seeing P, and T2 is the participants’ final prediction of

the apartment’s price after seeing P. WOA measures the degree to which people update

their beliefs and quantifies how much people weigh the received advice (i.e. the AI

recommendation). To better understand this, consider the scenario in which T2 is closer

to P compared to T1 — meaning that the participant made a significant update when

estimating T2 based on the received explanations, towards P and away from T1. In this

case, WOA is positive. WOA is equal to 1 if the participants’ final prediction matches the

AI recommendation and equal to 0.5 if the participant averages their initial prediction

with the AI recommendation P. WOA of 0 occurs when a participant ignores the AI

recommendation (T1 = T2) and a negative WOA signifies that a participant discounts the

recommendation completely and moves further away from the recommendation. WOA

can be seen as percentages and this straightforward interpretation is a key advantage of

this objective trust measurement.

As previously mentioned, no validated and established questionnaires exist that mea-

sure subjective trust in AI and algorithms. For this reason, the introduced trust in au-

tomation scale by (Jian et al., 2000) was used. Thus far, the questionnaire was cited in
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309 studies and of those, at least 100 used the scale in its original form (Gutzwiller et

al., 2019). Additionally, the TrustDiff (Brühlmann et al., in press) was utilized. Their

proposed semantic differential for user trust on the web shares the trust dimensions benev-

olence, competence and integrity of the ABI+ framework by Toreini et al. (2020) for AI.

Both scales range from 1 to 7, which simplifies comparison.

Data cleaning

After removing participants that did not fulfill the inclusion criteria (see Figure 1),

participants identified as outliers were excluded. For WOA, outliers were defined in the

following way:

1. Following prior research (Gino & Moore, 2007; Logg et al., 2019), all participants

were excluded that showed unrealistic WOA’s. In this case, an unrealistic WOA

was defined as being < -1 (more than 100 percent discount of the recommendation)

and > 2 (more than 100 percent overshoot of the recommendation).

2. Additionally, the interquartile rule was used to define outliers. By applying this

rule, outliers are defined as observations that fall below Q1 − 1.5 interquartile

range or above Q3 + 1.5 interquartile range.

By applying this approach, 65 participants were removed and 387 participants re-

mained for final data analysis.

Results

Descriptive statistics

Table 1 shows participants’ characteristics, as well as the descriptive statistics, split

by condition. The sample was predominantly male (61%) and had an average age of 37

years (M = 36.98, SD = 10.16). A majority of the participants (68%) possessed a higher

educational qualification (i.e. bachelor’s degree, master’s degree, Ph.D. or higher). See

Table 1 for more detailed demographic information. On average, participants across all

conditions approached the AI recommendation, resulting in a positive WOA (M = 0.69,
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SD = 0.36). Overall, TrustDiff showed low average ratings (M = 2.93, SD = 1.47), while

benevolence showed the highest ratings (M = 3.63, SD = 1.64) compared to the other

two subscales competence (M = 2.61, SD = 1.56) and integrity (M = 2.72, SD = 1.56).

The trust in automation scale showed higher overall ratings than TrustDiff (M = 5.00,

SD = 0.86).

Table 1

Participants characteristics and descriptive statistics of mean (M), standard deviation

(SD) and median (Mdn) for WOA, trust in automation and TrusDiff, split by condition.

Overall (n = 387)

Gender n % Age M Mdn Range Education n %

Male 235 60.7 36.98 35.00 18 - 69 High School 36 9.3

Female 148 38.2 College, no degree 83 21.4

Non-binary 3 0.8 Bachelor’s degree 194 50.1

No Answer 1 0.3 Master’s degree 66 17.1

Total 387 100 Ph.D. or higher 3 0.8

Other 5 1.3

Total 387 100

Control Feature Importance Counterfactual

(n = 133) (n = 146) (n = 108)

M SD Mdn M SD Mdn M SD Mdn

Weight of advice

Positive Recommendation 0.66 0.37 0.68 0.66 0.34 0.67 0.67 0.33 0.66

Negative Recommendation 0.67 0.37 0.69 0.73 0.37 0.79 0.76 0.36 0.78

TrustDiff (1 - 7)

Overall 2.92 1.44 2.70 3.04 1.45 2.70 2.79 1.51 2.60

Benevolence 3.47 1.64 3.67 3.78 1.53 4.00 3.61 1.78 3.67

Competence 2.57 1.48 2.25 2.74 1.61 2.25 2.49 1.57 2.13

Integrity 2.72 1.54 2.50 2.78 1.55 2.33 2.64 1.61 2.00

Trust in automation (1 - 7)

Overall 4.98 0.92 4.83 4.93 0.83 4.83 5.09 0.84 5.00
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Objective Trust - WOA

For WOA, residuals were checked for normal distribution via quantile-quantile plots

(Q-Q plots), as well as if the residuals’ variance was equal across groups (homoscedas-

ticity). The normality assumption seemed satisfied and Levene’s test indicated equal

variances (F = 0.61, p = .54) that did not differ between groups. To address H1 and

H2, corresponding contrasts were created. The first contrast allowed the comparison if at

least one of the two experimental conditions was significantly different from the control

condition (planned contrast 1: control condition vs. experimental conditions for answer-

ing H1). By defining another contrast, it was possible to test if the two experimental

conditions were significantly different from one another (planned contrast 2: feature im-

portance vs. counterfactual for answering H2). The effect of the three conditions on

WOA was analysed by employing linear mixed effect models (LMEMs), using the lme4

package for R (Bates, Mächler, Bolker, & Walker, 2015). β-estimates, t-values, as well

as their corresponding p-values and the .95 confidence interval (CI ) are reported.

Figure 4 . Boxplots for WOA’s of the different conditions split according to positive and

negative recommendations.
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The first model contained two fixed main effects: The first contrast as well as the

difference in the positive and negative recommendations (PM). Under the assumption

that the stimuli and conditions have varying random effects for the different participants,

a random intercept was additionally introduced in the model. Expressed in R-syntax,

the model was defined as:

WOA ˜ 1 + Contrast1 + PM + (1 | participants)

For this first model, the experimental conditions were not significantly different from

the control (β = 0.04, t = 1.39, CI = [-0,01, 0.08], p = .17), while the distinction between

positive and negative recommendation was highly significant (β = -0.05, t = -4.26, CI =

[-0.08, -0.03], p < .001). See Figure 4 for the boxplots of the different conditions, split

by positive and negative recommendations. Since the first contrast was not significant,

further examination of the second contrast was redundant. To check whether there was

an interaction effect between conditions and the negative and positive recommendations,

a second model was defined:

WOA ˜ 1 + Contrast1 * PM + (1 | participants)

This second model revealed that there was indeed a significant interaction effect (β

= -0.07, t = -2.64, CI = [-0.11, -0.03], p = .01). Comparing the two models confirmed

that the inclusion of the interaction term in the model was justified since it significantly

improved the model fit (χ2(1) = 6.95, p = .01). To better understand this relationship,

an interaction plot was created (see Figure 5). The non-parallel lines indicate that the

condition effect on WOA was different for positive and negative recommendations. Since

the interaction effect was significant, the main effects of the second model can not be

interpreted in a meaningful way. Depending on whether the recommendation was positive

(the AI recommended a higher subleasing price) or negative (the AI recommended a lower

subleasing price), the two explanation techniques had different effects on WOA. For

positive recommendations, explanations had a negligible effect on WOA, yet for negative

recommendations, the effect was substantial. Therefore, the effect of explanations can

not be clearly understood without taking into account the differences in positive and

negative recommendations.
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Figure 5 . Interaction plot, capturing the interaction between the effects of conditions

and positive and negative recommendations. Note that the y-axis is scaled to better

visualize the effect.

To better understand the obtained results, positive and negative recommendations

were controlled for by dividing the data into two subsets. One subset contained the

three apartments with the positive recommendations, the other subset contained the

three apartments with the negative recommendations. Following this, the first model

was executed again for the two discrete subsets, thus omitting PM as a main effect. For

negative recommendations, the first contrast was significant (β = 0.07, t = 2.17, CI =

[0,02, 0.13], p = .03), while the same was not true for the positive recommendations (β

< -0.001, t = -0.03, CI = [-0.06, 0.06], p = .98). This result implied that for negative

recommendations, at least one of the two experimental conditions leads to significantly

higher WOA compared to the control. To identify which one, a model without contrasts

was defined that allowed the distinction between the experimental conditions.

WOA ˜ 1 + Conditions + (1 | participants)

Running this model revealed that the condition counterfactual led to significantly

higher WOA’s compared to the control (β = 0.09, t = 2.19, CI = [0.02, 0.15], p =



TRANSPARENCY AND TRUST IN AI 32

.03), while feature importance did not (β = 0.06, t = 1.61, CI = [-0.01, 0.12], p = .11).

The β-estimates indicated that on average, counterfactual explanations increased WOA

by an approximated 9%. Note that feature importance explanations increased WOA

by roughly 6%, but this difference was not significant for the .05 significance level. A

further analysis with the second contrast (planned contrast 2: feature importance vs.

counterfactual) revealed that the difference between the two experimental conditions was

not significant (β = -0,03, t = -0.71, CI = [-0.09, 0.04], p = .48).

Subjective Trust - Trust in automation scale

To test H3 (the experimental conditions lead to higher subjective trust ratings com-

pared to the control) and H4 (counterfactuals lead to higher subjective trust ratings

compared to feature importance), multiple one-way analysis of variance (ANOVAs) were

intended. However, a visual inspection of the data using Q-Q plots indicated a non-trivial

violation of assumption of normality. A subsequent Shapiro–Wilk test confirmed this pre-

sumption. Additionally, Levene’s test for homogeneity of variance between groups sug-

gested additional violations of ANOVA’s assumptions (F = 0.80, p = .45). The ANOVA

results might thus not be interpretable and meaningful. Under these circumstances, a

Kruskal-Wallis test (Kruskal & Wallis, 1952) was carried out. Kruksal-Wallis test is a

non-parametric alternative to ANOVA that does not assume a normal distribution of the

residuals (Kruskal & Wallis, 1952).

The results showed that neither the ratings for the trust in automation scale (H (2)

= 1.76, p = .42) nor the overall TrustDiff (H (2) = 2.26, p = .32), as well as its subscales

benevolence (H (2) = 2.62, p = .27), competence (H (2) = 2.10, p = .35) and integrity

(H (2) = 1.28, p = .53) were significantly different between conditions. Figure 6 captures

the similar subjective trust ratings for the two experimental conditions and the control.

It is interesting, however, that benevolence ranks higher than the other two subscales,

competence and integrity. As mentioned in the descriptive statistics, the rating differences

between the trust in automation scale (M = 5.00, SD = 0.86) and the TrustDiff (M =

2.93, SD = 1.47) are substantial.
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Figure 6 . Boxplots of the ratings for the subjective trust measurements trust in

automation scale, TrustDiff as well as its subscales benevolence, competence and

integrity for each condition.

To evaluate the association between objective trust behavior and subjective trust

ratings, a correlation analysis was performed. The assumption was that participants with

high WOA scores also reported higher subjective trust ratings and vice versa. Because of

the violation of normality assumption, Kendall’s non-parametric rank-based correlation

coefficient was applied. Kendall’s tau statistics indicated a significant positive relationship

between trust in automation and WOA scores (rτ (385) = .07, p = .047). However,

according to Cohen (1988), the effect size of the relationship is low if the value of rτ

varies around 0.1 and squaring the correlation coefficients indicated that a mere 0.49%

of the variance in WOA is explained by subjective trust. This positive relationship

was strongest for feature importance (rτ (144) = .10, p = .08), followed by the control

condition (rτ (131) = .05, p = .37) and counterfactuals (rτ (106) = .05, p = .48), while not

being significant for all conditions. Surprisingly, for TrustDiff, the relationship changed
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direction (rτ (377) = -.10, p < .01). This circumstance complicates the interpretation of

the results. The negative relationship was again strongest for feature importance (rτ (141)

= -.15, p < .01), this time, however, followed by counterfactuals (rτ (104) = -.09, p = .16)

and the control condition (rτ (128) = -.05, p = .37). The varying degrees of freedom are

caused by missing values in the TrustDiff, since participants could choose not to answer.

To better understand the obtained results, these missing values were further examined.

Overall, there were 319 missing values. Comparing this number with the total number

of responses, that is the number of participants (n = 387), multiplied by the number of

items (n = 10), roughly 8% of all TrustDiff responses were missing values. What was

striking, however, is their uneven distribution. The subscale benevolence accounted for

53% of all missing values. See Table 2 for a comprehensive overview of the distribution

of missing values for each subscale of the TrustDiff.

Table 2

Distribution of missing values (n = 319) for TrustDiff in the original enumeration by

(Brühlmann et al., in press), expressed in whole numbers, as percentages of the total

number of missing values, and corresponding Kendall’s correlation coefficients for trust in

automation and WOA.

TrustDiff item Number of missing values In percentage (%) Kendall’s tau TIA Kendall’s tau WOA

1 (Benevolence) 57 18 .03 -.08*

2 (Benevolence) 55 17 .07 -.11**

3 (Benevolence) 57 18 -.02 -.05

4 (Integrity) 33 10 -.21*** -.09*

5 (Integrity) 16 5 -.29*** -.11**

6 (Integrity) 30 9 -.26*** -.11**

7 (Competence) 13 4 -.27*** -.15***

8 (Competence) 18 6 -.34*** -.10*

9 (Competence) 15 5 -.33*** -.11**

10 (Competence) 25 8 -.29*** -.11**

Total 319 100 – –

Note. *p ≤ .05. **p ≤ .01. ***p ≤ .001. TIA = trust in automation.
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Finally, the correlations on the TrustDiff’s item level with trust in automation and

WOA was examined. Interestingly, for the relationship between trust in automation and

two of the three items of the subscale benevolence, Kendall’s tau was positive. All other

items showed a significant negative correlation. The overall negative relationship between

TrustDiff and WOA was reconfirmed by the exclusively negative correlation on the item

level (see Table 2).

Discussion

This study was able to show that participants generally accept AI recommendations

in low-stake decision making processes — in this case, receiving AI advice to find an

optimal apartment subleasing price. Regardless of the different conditions, participants

on average showed high overall WOA (M = 0.69, SD = 0.36). A WOA of 0.69 implies

that participants adopted nearly 70% of the AI recommendations when updating their

prior beliefs. This finding supports the idea of people displaying algorithm appreciation in

decision-making processes (Logg et al., 2019). Finding an optimal apartment subleasing

price is a more objective domain than AI recommendations was studied in the past.

XAI and HCI researchers often focus on subjective domains like joke recommendations

(Yeomans et al., 2019) and forecasting romantic partners (Yin et al., 2019).

It was further demonstrated that under certain conditions, human-friendly explana-

tions have a significant effect on objective trust behavior, captured by weight of advice.

Our findings therefore support H1, that the experimental conditions lead to higher objec-

tive trust scores compared to the control. However, the effect of explanations depended

on the nature of the decision that participants had to make. Participants were presented

two types of recommendations in a randomized order — for the first type, the pseudo

AI recommended participants to increase their initial guess for the apartment prices (re-

ferred to as positive recommendations in this thesis) as to potentially receive more money.

For the second type, participants were advised to decrease their initial price (referred to

as negative recommendations in this thesis) and hence potentially earn less money. The

results of the experiment indicate that for positive recommendations, different explana-
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tions techniques had no effect on WOA. Contrarily, for negative recommendations, there

was a significant effect of explanations on WOA, meaning that participants in the experi-

mental conditions updated their initial guess and approached the AI recommendation up

to 9% more than participants in the control. This seems counterintuitive at first glance,

since one might expect that participants would always choose to embrace the prospect

of obtaining a higher subleasing price. It is conceivable, however, that the two types

of recommendations can be thought of as two distinct decision-making processes. The

well-studied concept of loss aversion by Tversky and Kahneman (1991) could account for

this discrepancy and serve as an explanation attempt for these findings. Loss aversion

suggests that, psychologically speaking, losses are twice as powerful than gains because

people assign more utility to losses than to gains (Tversky & Kahneman, 1991). In prac-

tical terms, this means that a person who loses $100 will subjectively experience more

dissatisfaction than another person would experience satisfaction from gaining $100. The

study design seems to satisfy the preconditions for a possible loss aversion effect, since

it accounts for positive and negative recommendations. When participants were advised

by the AI to increase their initial price guess, it is likely that they were concerned that

this potential price raise would cause an unsuccessful sublease. The prospect of getting

more money (gain) mattered less in this decision-making process than the possibility of

not being able to sublease at all (loss). When faced with loss aversion, the explanations

from the pseudo AI might not be convincing enough to overcome the participants’ higher

assigned utility to losses. Within the framework of loss aversion, a recommendation from

the AI to decrease the initial price was a different kind of decision-making process. In

this case, no loss aversion was induced and participants were encouraged by the AI ex-

planations, that demanding less money was the right decision to successfully sublease the

apartment. Naturally, a price reduction also leads to small losses, but compared to the

possibility of not being able to sublease at all, these smaller losses might be negligible.

When not being faced with loss aversion, AI explanations seem to convince people to

adjust their initial sublease price, compared to the control where no additional explana-

tion was present. What is different from the classical loss aversion scenario, is that no
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concrete possibilities were assigned to the two potential outcomes. Participants had no

indication of how their decision might affect the likelihood of a successful subleasing.

The interpretation under consideration of loss aversion is speculative, but the find-

ings indicate that trust behavior induced by explanations occurs only in certain cases

and that people might demonstrate certain cognitive biases, here loss aversion. With

the notion of human-friendly explanations by Miller (2019) in mind, the findings sug-

gest that in addition to explanations being selective, contrastive, non-probabilistic and

social, explanations ought to be case-specific. Case-specific signifies that depending on

the individual case, a specific explanation that accounts for potential cognitive biases in

this circumstance may be more human-friendly than another explanation. An example

with regard to this study could be that in the case of negative recommendations that do

not induce loss aversion, feature importance and counterfactuals seem sufficiently com-

prehensible explanations for increased trust behavior. However, in the case of positive

recommendations that induce loss aversion, those explanations do not seem to convince

people and in this case, other explanations might be more persuasive.

Other possible explanations for the findings of our study are conceivable. An alter-

native reason for the obtained results could be that participants already maximized the

expected price when making an initial guess (T1) and that explanations accompanying

the AI recommendation were not convincing enough for participants to further increase

the subleasing price for their final guess (T2). Decreasing the subleasing price, however,

was not in conflict with the maximized expected profit. The second hypothesis H2, that

counterfactuals lead to higher objective trust scores compared to feature importance,

can not be supported by these results. Although counterfactuals increase WOA nearly

3% more than feature importance for negative recommendations, this difference was not

significant under the .05 significance level.

For subjectively stated trust, the results showed no significant differences between

conditions for the trust in automation scale, the overall TrustDiff, as well as its subscales

benevolence, competence and integrity. The results therefore do not support H3, which

states that the experimental conditions lead to higher subjective trust ratings compared
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to the control. Neither H4 can be supported, i.e., that counterfactuals lead to higher

subjective trust ratings compared to feature importance. The findings, however, are not

conclusive. While the trust in automation scale indicated a relatively high overall trust

score (M = 5.00, SD = 0.86), the overall score for TrustDiff was low (M = 2.93, SD

= 1.47). Examining the correlations between WOA and the trust in automation scale

ratings, as well as the TrustDiff ratings, revealed further contradictions. The expected

result was that objectively observed trust would be reflected in subjectively expressed

trust – i.e., the higher the observed trust captured by WOA, the higher the subjec-

tively expressed trust which was assessed by the trust questionnaires. However, while

Kendall’s correlation coefficient was positive for trust in automation and WOA, the di-

rection changed for the relationship between TrustDiff and WOA. According to Cohen

(1988), all correlations were associated with low effect sizes that explained only a fraction

of the variance of objective trust, captured by WOA. Analyzing the TrustDiff revealed

that there was a relatively high number of missing answers of 8%, and a more thorough

investigation confirmed that the subscale benevolence was conspicuous in several ways.

To begin with, benevolence had the highest number of missing values, accounting for

more than half of all missing values in the TrustDiff. Since the TrustDiff was designed for

evaluating user trust in online services and websites, it is not surprising that the transfer

to trust in AI might not be straightforward. The benevolence differentials insensitive vs.

sensitive, ignoring vs. caring and inconsiderate vs. empathic may not be applicable to AI

in particular, since these differentials in their original form apply to the human develop-

ers or operators of online content. When applied to AI, those differentials possibly lead

to anthropomorphism, the attribution of human traits to non-human entities, which has

been demonstrated to make people feel uncomfortable (MacDorman, Green, Ho, & Koch,

2009). This could be an explanation for the high number of missing values for benevolence

and resembles the argumentation of Hartmann (2020), that it might be unreasonable to

apply certain aspects of trust when referring to interactions between humans and AI.

Additionally, benevolence was the subscale with the highest rating of the TrustDiff (M =

3.63, SD = 1.64), being more similar to the rating of the trust in automation scale. This
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similarity was also evident when looking at Kendall’s correlation coefficients between the

TrustDiff items and the overall score for trust in automation. The benevolence items

were the only items that did not show a significant negative correlation with the overall

score of the trust in automation scale. This might imply that the trust in automation

scale and the subscale benevolence cover similar aspects of subjective trust, as opposed

to the subscales integrity and competence. The obtained results give rise to doubts if the

ABI+ framework by Sanders et al. (2006) is a promising candidate for trust evaluation

in AI, since the TrustDiff should capture its proposed trust dimensions benevolence and

integrity. Alternatively, the trust in automation scale might not capture subjectively

stated trust accurately. Whatever the reasons for this discrepancy may be, it seems that

objectively measured trust behavior and subjectively stated trust are not fully transfer-

able to each other. While explanations can lead to higher objective trust scores, the same

is not true for subjective trust ratings. Unfortunately, for subjective trust measures, it

was not possible to differentiate between positive and negative recommendations as it

was for WOA. It would have been interesting to see if the effects of explanations for

negative recommendations are likewise observable in the subjective trust measures. The

pressing question how trust behavior and the perception of trust relate to one another

and if human-friendly explanations effectively promote genuine trust thus remains.

Limitations and future work

This study has certain limitations that future work should consider. Firstly, this

study used a pseudo AI and not a real AI to recommend participants a specific price.

While a screening of the open-ended questions did not show any critical comments ad-

dressing this, it was not properly controlled if the deception worked. However, by remov-

ing WOA outliers, participants were excluded that indicated unreasonable values. Next,

these findings only apply to low-stake decisions, including small and fictive amounts of

money. As mentioned earlier, a core assumption within the trust literature is that trust

contains some sort of risk-taking behavior and vulnerability (Hoff & Bashir, 2015). While

our study design encouraged participants to perform well to receive an additional mon-
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etary bonus, future studies should conduct more realistic experiments, where a more

tangible loss depends on the participants’ decision to trust AI. Those studies should also

focus on domains other than apartment prices to investigate if the findings of this study

are transferable to different scenarios. Another methodological limitation was the small

number of evaluated apartments and that the positive and negative AI recommendations

were apartment-dependent, meaning that it was arbitrarily defined for which apartments

the AI would always advise increasing or decreasing the initial price. Creating a pool of

apartments, randomly picking some apartments out of it and assigning either positive or

negative recommendations would have been a more reasonable methodological approach.

By doing so, it would have been possible to differentiate between positive and nega-

tive recommendations for subjective trust measures, as was the case with WOA. Also,

a high number of MTurk participants did not satisfy the quality checks and had to be

removed (n = 310). Due to those exclusions, the originally envisaged sample size (n =

480) was not achieved. It’s conceivable that with an adequate sample size, the effect of

feature importance would have turned out to be significant. On the positive side, the fact

that there were nevertheless significant differences indicates that the effect size is larger

than expected. Lastly, the study design does not distinguish between dispositional trust,

situational trust and learned trust, as suggested by Hoff and Bashir (2015). It is recom-

mended that future studies investigate those varying manifestations of trust. Researchers

could measure user trust before participants are exposed to an AI system and compare it

with the stated trust that participants report afterwards (learned trust). Or they could

expose participants to AI recommendations while inducing different emotional valence

(situational trust). Further factors such as participants’ housing situation and task fa-

miliarity that could also have an effect on subjective trust behavior were not considered

in this study.
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Conclusion

The findings provide evidence that in some cases, transparency in the form of human-

friendly explanations can enhance objectively observed trust behavior in end-users. Ex-

plainability as opposed to interpretability appears to be a real option for transparent

AI that is both human-friendly and meets the legal GDPR requirements, while avoid-

ing the major disadvantages of interpretability. It was demonstrated that depending on

the type of decision-making process, it matters what kind of explanation AI provide.

More specifically, only in cases where an AI recommended to decrease the price (negative

recommendations), explanations led to increased trust behavior, captured by weight of

advice. This issue of case-specificity has been given little attention in the current HCI

and xAI literature. People seem to retain certain cognitive biases in their decision-making

processes involving AI. In this study, loss aversion was introduced to explain the differ-

ences in objective trust behavior, but other biases and heuristics might also play a role.

Future experiments should include means of validating that these cognitive biases are

indeed taking place and AI explanations must account for those when expected to be

human-friendly. Ideally, future AI might provide explanations, perfectly tailored to a

specific decision-making process. Researchers as well as practitioners must be aware of

this when designing AI, since they are not inherent in the systems themselves. Referring

to Miller’s human-friendly explanations, the findings suggest that in addition to expla-

nations being selective, contrastive, non-probabilistic and social, explanations should also

be case-specific as design principle for human-friendly AI explanations. This is impor-

tant, since more and more AI systems are deployed in real-world applications and for a

successful adaption, human biases in decision making processes must be accounted for.

A behavior change of 8%, induced by explanations, may not appear to amount to much,

but in large-scale scenarios it could add up over time and be of real significance in an

increasingly automated world.

The relationship between objective and subjective trust, however, remains ambigu-

ous. While participants in this study generally showed high objective trust behavior with

AI advice adoption of nearly 70%, the results for subjective trust are inconclusive. It is
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also unresolved whether people subjectively experience trust when they show trust behav-

ior. The behavior change might be induced by blind-trust or other subjective experiences

like uncertainty, ignorance or mental overload. These findings can not answer conclu-

sively if there exists a measurement problem when it comes to assessing subjective trust

via questionnaires. I suggest that more work needs to be invested in validated AI trust

questionnaires, especially designed for end-users. Such questionnaires could ensure that

only genuine trustworthy AI are being employed in decision-making processes that tan-

gent humans. Transparency and trust in AI just began to appear on the HCI landscape

and more research should be conducted in the area to aim for human-friendly AI.
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